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ABSTRACT 

Computer simulations based on the Craig distribution model have been used to examine how sep- 
aration varies with experimental conditions for the case of heavily overloaded (overlapping bands) gradient 
elution. A close similarity is noted between these gradient separations and “corresponding” isocratic runs 
(where isocratic capacity factors k’ are equal to gradient capacity factors K). The present discussion as- 
sumes reversed-phase chromatography, although similar conclusions would result for other chromato- 
graphic methods (e.g., ion exchange). Attention was also given to the case of sample components having 
different dependencies of retention on mobile phase composition (different S values). The special behavior 
of such samples can be understood in terms of changes in the separation factor a as a function of gradient 
conditions. 

INTRODUCTION 

Reversed-phase gradient elution is today widely used for the separation and 
recovery of various purified products on a laboratory, pilot-plant and production 
scale. This is especially true for the case of large biomolecules: peptides and proteins, 
oligonucleotides and nucleic acids, and related compounds. The separation of these 
typically complex samples is affected by a large number of experimental variables 
whose role is often poorly understood. Recent studies [l-6] based on the computer 
modeling of reversed-phase gradient elution under preparative conditions have 
removed some of this uncertainty and we now possess the conceptual tools needed for 
a systematic examination of these separations. 
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Other work [7-91 has shown that gradient elution runs are equivalent in most 
respects to “corresponding” isocratic separations (where a mobile phase %B is chosen 
to give similar retention as during gradient elution). In the present paper it will be 
shown that this analogy extends to the case of heavily-overloaded separations carried 
out in either an isocratic or gradient mode. This allows several conclusions previously 
reported for heavily overloaded isocratic elution [lo] to be extended to corresponding 
gradient separations. 

The present study makes use of computer simulations in order to show how the 
production rate (Pa, g/h) of purified product depends on various experimental 
conditions. Our aim will be to define general conditions that maximize PR for a given 
sample. It should be noted that the present treatment is based on an idealized model 
(the Langmuir isotherm) that is known to be inapplicable in some respects for the 
high-performance liquid chromatographic separation of macromolecular (and other) 
samples. As a result, our goal in these studies is to develop some practical guidelines for 
preparative separations, not to attempt quantitative predictability for every case. 

THEORYANDBACKGROUND 

Computer modeling 
The computer program (CRAIG4) used in the present study has been described 

[3,10,11]; it is based on a Craig distribution process and the Langmuir isotherm as an 
approximation to actual high-performance liquid chromatography (HPLC) systems. 
CRAIG4 allows the simulation of isocratic, gradient and step-gradient separations as 
a function of sample retention (k’ values for a small sample), the column plate number, 
gradient conditions and sample size. In the present study, the samples are mixtures of 
two components X (first-eluted) and Y (the product). Various checks on the 
performance of CRAIG4 suggest that it is sufficiently reliable for the present 
application. The sample size (w/wJ which is entered into CRAIG4 must be 1.8 times 
larger than a corresponding experimental sample [lo]. All sample sizes reported here 
have been so corrected, so as to correspond to experimental values, as in ref. 10. See the 
Symbols list at the end of this paper for the meaning of the standard symbols used here. 

Similarly, column plate numbers No (small sample) are equal to [(a + 1)/q n,; 
Erefers to the average e-value during gradient elution of a small sample of the solute 
(see eqns. 1 and 2 below), and n, is the number of Craig stages in a simulated run. The 
value of IZ, was held constant during each Craig simulation. 

Gradient vs. isocratic separation 
Previous work has established an overall similarity between isocratic and 

gradient separations for injection of either a small [7,8] or a large [9] sample, when 
“corresponding” conditions are used in both isocratic and gradient runs (reversed- 
phase HPLC). “Corresponding” conditions imply two requirements. First, all 
experimental parameters (column, flow-rate, etc.) have the same values in both runs, 
except that the mobile phase composition cp is constant in the isocratic run and varies in 
the gradient run. Second, gradient steepness b is related to the capacity factor k’ in the 
corresponding isocratic separation as 

b = 1/1.15k 
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where 

b = V,,,AqS/tGF (2) 

Here, V, is the column dead volume, Arp is the change in the volume fraction cp of the 
B solvent during the gradient, tG is the gradient time and F is the flow-rate. The 
solute-dependent parameter S is equal to the slope of a plot of isocratic values of k’ W. 
cp. For “corresponding” conditions, such that eqns. 1 and 2 apply for each band 
(solute) in both the isocratic and gradient separation, it is found that sample resolution 
is the same in both cases (for both small and large samples). 

Maximum production rate PR for isocratic separation 
Previous work [lo, 12,141 has established certain relationships which define 

optimum conditions for preparative HPLC in an isocratic mode. The most important 
variable is the separation factor cc; the mobile phase composition and column should 
usually be selected to provide a maximum value of a for the product band Y and 
adjacent impurity bands X and Z on each side of band Y. The average value of k’ for 
bands X and Y (k, and k,, small sample) has only a minor effect on production rate, as 
long as 0.5 < k, < 3. 

Given values of k, and a for the separation, a decision is next required on the 
desired recovery (percentage of injected Y) of pure product from a single separation. 
Here (as previously) we define “pure” product as 99% Y plus 1% X, unless noted 
otherwise. The production rate PR is strongly dependent [lo] on the percentage 
recovery selected; e.g., relative PR values of 1:3:10 for recoveries of 99.8%:95%:50%. 
Here a 95%-recovery will be assumed unless noted otherwise. 

Once a, k, and the percentage-recovery value have been defined, there is an 
optimum plate number IV, (small sample value) and sample size (wy/ws), the weight of 
injected Y divided by the column capacity w,) for a maximum value of PI. These 
relationships for isocratic separation are shown graphically in Fig. 1 (from ref. 12) for 
k, = 1. Production rate PR increases for larger a: PR w (constant). (a - 1)3. 

As derived in the related study of production rate in isocratic separation [lo], run 
time and the (small sample) plate number IV, (flow-rate and column length varied, 
pressure and other conditions constant) are related approximately as 

run time = (constant) Nt’” (3) 

Production rate is given as 

p 
R 

= (constant) (weight of recovered product) 

(run time) (4) 

An arbitrary value of the constant in eqn. 4 is assumed; see ref. 10 for details. Run time 
is defined as the retention time t, for the last-eluted band. 

Samples in which S is not equal 
The value of the solute parameter S is determined mainly by solute molecular 

weight, and secondarily by other structural characteristics of the solute molecule. 
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Fig. 1. Dependence of optimum sample size and plate number on CC, for maximum production rate (assumes 
k, = 1, equal amounts of compounds X and Y in sample, specified recovery of Y). Taken from ref. 12. 

Therefore, a product compound Y and its related impurity X will often have similar 
values of S. For this case (equal Svalues for X and Y), we will show in the present paper 
that production rate in gradient elution is governed by essentially the same 
relationships (Fig. 1 and related discussion) as for isocratic elution. 

It is possible, however, for two compounds X and Y to have different values of 
S -even when X and Y are molecules of quite similar size and structure. This is 
particularly true for peptides and proteins, the S values of which appear to be strongly 
dependent on molecular folding and conformation. For example, the 14 OOO-dalton 
protein interleukin-2 can exhibit differences in S by a factor of as much as 3, as a result 
of the reduction of a single disulftde bond within the protein molecule plus substitution 
of a single amino acid by a different amino acid [14]. 

The preparative, gradient-elution separation of compounds X and Y having 
different values of S (S, and S,) is very much affected by the ratio SJS,. When 
S,/S, < 1, larger amounts of sample can be injected (other conditions the same) so that 
PR is thereby increased. When L&/S, > 1, the opposite is true. This is schematically 
illustrated by the diagrams of Fig. 2, which relate isocratic retention as a function of 
cp (straight-line plots) to corresponding gradient separations of a small and large 
sample (chromatograms). 

When S, = S,, the plots of log k’ vs. cp in Fig. 2A are parallel, and the separation 
factor a is constant as cp is varied. As sample size increases in gradient elution, the 
sample bands X and Y are eluted in a progressively weaker mobile phase (smaller 
values of VP>, but c1 remains constant. When S, < S, (Fig. 2B), a is seen to increase for 
smaller rp, and also for a larger sample in gradient elution. The result is a better 
separation of the sample. When S, > S, (Fig. 2C), c( decreases as the sample size 
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time time time 

Fig. 2. Relation of isocratic retention (k’) as a function of mobile-phase composition (%B) to maximum 
sample size in preparative separation by gradient elutioa. See text and ref. 5 for details. 

increases, with a resulting poorer separation. For the further discussion of Fig. 2, see 
ref. 5. 

When solute S values differ appreciably (by > 2%), the corresponding 
conditions for maximum production rate in preparative gradient elution may also 
differ. This situation is examined further in the present study. 

RESULTS AND DISCUSSION 

Experimental conditions for maximum production rate P,(S, = S,) 
Optimum values of sample size and column plate number. The approach followed 

in ref. 10 and in the present study is illustrated in Figs. 3 and 4 for a fixed set of gradient 
conditions: rf = (l/l. 15b) = 0.87, a = 1.7; the starting value of k, (defined as k,,) = 10 
for solute X and 17 for solute Y (kO refers to k’ for a small sample). Fig. 3 shows the 

WY/“. = 
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h- 
Fig. 3. Computer simulations (CRAIG4) of preparative separation by gradient elutioa as a function of 
sample size. Conditions: /cog = 10 and 17 for X and Y (a = 1.7); N, = 400, b = 1 .OO (k = 1); equal amounts 
of X and Y in sample. 
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Fig. 4. Determination of conditions for maximum production rate in preparative gradient elution. (A) 
Determination of sample size for 95% recovery of 99%-pure Y; conditions of Fig. 3. (B) Plot of production 
rate (for 95% recovery of Y) vs. column plate number; procedure of Figs. 3 and 4A repeated for other plate 
numbers as indicated. 

resulting separations for different sample sizes and a plate number N, = 400. It is 
assumed here and elsewhere that the weights of X (w,) and Y (w,) in the sample are 
equal; later in this paper we will examine the case of unequal values of w, and w,.. The 
numbers (e.g., 92/96 for WJW, = 0.06) in Fig. 3 refer to the recoveries of 99%-pure 
X (92%) and Y (96%) respectively. 

In Fig. 4A the recoveries of pure Y (from Fig. 3) are plotted vs. sample size. We 
can select optimum conditions for any desired recovery of pure product; in the present 
study we will assume that 95% recovery is desired. By analogy with the study of ref. 11 
for isocratic separation, it can be assumed that maximum production rate will be 3-fold 
less on average for a 99.8% recovery of pure Y, and 3-fold greater for a 50% recovery 
of pure Y. In Fig. 4A it is seen that 95% recovery of Y corresponds to a sample size of 
WJW, = 0.055; i.e., 5.5% of the column saturation capacity. 

The procedure of Figs. 3 and 4A was next repeated for other values of the column 
plate N,,, yielding values of sample size (for 95% recovery) as a function of N,,. Eqns. 
3 and 4 were then used to obtain values of PR vs. N,, and these are plotted in Fig. 4B. It 
is seen that a maximum production rate can be obtained with a plate number of about 
280. That is, for these gradient conditions (a = 1.7, b = 1.00, and k,, = 10 for X) we 
have established the sample size (w,./w, = 0.04) and plate number (No = 280) that 
yields a maximum production rate (PR = 0.004; arbitrary units, see ref. 10). As 
observed previously [ 1 O] for isocratic separation, production rate is not greatly affected 
if somewhat different values of N,, are used; e.g., 200 < N,, -C 400. 

Sample size vs. plate number. As the plate number N, is increased, it is possible to 
inject a larger sample for the same (95%) recovery of pure product (Y). This is shown 
in Fig. 5A, where the amount of Y that can be injected (95% recovery of 99%-pure Y) 
is plotted vs. N,. The plate number for maximum production rate (optimum NJ is 
shown as a dark point on each curve. For each value of tl there is a minimum plate 
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Fig. 5. Comparisons (as in Fig. 4B) of maximum sample size for 95% recovery of 99%-pure product as 
a function of plate number N, and a. Conditions: k., for X = 10, b = I .OO. (A) All data; 0 = conditions for 
maximum production rate for a given value of a. (B) Chromatograms for separations of (A) that correspond 
to maximum production rate [designated by 0 in (A)]. 

number required, below which the desired recovery (95% Y) is not possible. Likewise, 
the maximum sample size revels off to a constant value for plate numbers somewhat 
larger than the optimum value of N,. This is strongly reminiscent of the findings of 
Knox and Pyper [ 121 for isocratic touching-band separations. It should also be noted 
that the optimum sample size (for an optimum value of N,) in isocratic touching-band 
separations is about 2/3 of the maximum sample size for a large value of N, (eqn. 16a of 
ref. 13, with q = 3); the corresponding optimum sample size in Fig. 5B is 5@-65% as 
large as the maximum sample size for large N, (i.e., similar to the value of 67% for 
touching-band separations [ 121). 

For isocratic separations with 95% recovery of pure product, it was observed 
[lo] that a small-sample separation with the optimum plate number gives a resolution 
of the two bands (X and Y) of R, = 1.18 f 0.06; i.e., a constant value that can be used 
to verify that an optimum value of N, has been selected for a given separation. Fig. 5B 
shows the corresponding small-sample separations that correspond to the optimum 
values (0) of Fig. 5A. The resolution of these various separations is again constant, 
with R, = 1. l-l .2. This is essentially the same result found for isocratic separation; i.e., 
the similarity of isocratic and gradient elution is again confirmed. 

Effect of initial mobile phase composition. The choice of initial mobile phase 



28 L. R. SNYDER, J. W. DGLAN, G. B. COX 

06 

02 

k, (av.1 

Fig. 6. Production rate (for 95% recovery of Y) in preparative gradient elution as a function of the starting 
mobile phase (which determines .k.* for X and Y). Conditions: (gradient runs) a: = 1.7, N, = 280, b = 1.0, 
sample size adjusted to yield 95% recovery of 99%-pure Y; (isocratic runs) a = 1.7, N, = 300, 7~. = 1.0, 
sample size adjusted for 95% recovery of Y. Equal amounts of X and Y in sample. 

composition (cp or %B) determines the values of k’ (k,,) at the beginning of separation; 
the larger cp,,, the smaller is k,, This will in turn affect: (a) the amount of sample that 
can be injected (for 95% recovery of 99%-pure product) and (b) the resulting 
production rate. 

Computer simulations were carried out for different values of keg (k,, = 10 and 
17 for X and Y, respectively, in the example of Figs. 3 and 4), in order to determine 
production rate as a function of k,,. These are summarized in Fig. 6 for the same 
conditions as above (a = 1.7, b = 1 .OO”), except that the initial mobile phase is allowed 
to change so as to vary the keg values of solutes X and Y. Values of the optimum sample 
size w,/wS (95% recovery of Y) were determined first for each value of keg, in the same 
manner as in Figs. 4 and 5A. These values are plotted in Fig. 6 (dashed curve) and are 
seen to increase with larger values of k,, (av.). The run time increases also with keg, so 
that production rate (eqn. 4) passes through a maximum value fork,, (av.) x 25. This 
is a quite flat maximum,-however, so that production rate is roughly the same for 
8 < keg < 100; i.e., the choice of the initial mobile phase composition can be varied 
somewhat without affecting production rate. 

Also noted in Fig. 6 is the production rate for the corresponding isocratic 
separation (- . - .); i.e., for k, = 1, ky = 1.7, and a = 1.7. The maximum production 
rates for the corresponding isocratic and gradient separations (for an optimum value 
of k,,) are seen to be similar (PR = 0.0036 VS. 0.0042). 

’ The optimum plate number N. = 280 determined in Fig. 4B was held constant in these computer 
simulations. Reoptimizing N. for each value of k, did not change the maximum value of Z’s by more than 
S-IO% (see later discussion of Fig. 12). 
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TABLE I 

PRODUCTION RATE PR AS A FUNCTION OF SEPARATION CONDITIONS FOR EITHER 
ISOCRATIC OR GRADIENT ELUTION 

Conditions (k.,, w. = wy, N,) selected for maximum Pk; b = 1.00, S. = S,.. 

ct 

1.40 
1.70 
2.00 
3.00 

Optimum N, 

Isocratic 

6-100 700 
S-100 300 
8-150 180 

25-200 80 

Gradient 

700 
280 
180 
60 

w,/w. 

Isocratic 

0.014 
0.03 
0.07 
0.16 

Gradient 

0.018 
0.04 
0.08 
0.14 

pR 

Isocratic Gradient 

0.0004 0.0005 
0.004 0.004 
0.02 0.02 
0.04 0.08 

Effect of the separation factor a. The simulations summarized in Fig. 6 for 
a = 1.7 were repeated for other values of a, with the results of Table I. It is seen that the 
optimum values of the plate number NO and sample size (w,/w,) are generally similar 
for both isocratic and gradient elution, as are values of the maximum production rate 
for a given value of a. This is further illustrated in Fig. 7 where maximum values of PR 
are plotted vs. a for both isocratic (---) and gradient ( -) elution. 

The lower production rate for isocratic vs. gradient elution (Fig. 7) at high values 
of a is mainly an artifact of Craig simulation. Thus the isocratic Craig plate number N,, 
is lower for the second band relative to the first (for a fixed value of n,, NO decreases 
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a 

Fig. 7. Maximum production rate (95% recovery of Y, optimized values of N, and w,/w.) for isocratic and 
gradient elution as a function of tl. Data of Table I. 
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with increasing k’), and this difference becomes larger for larger values of cI. In gradient 
elution, on the other hand, the plate numbers for both bands are equal (because values 
of Rare equal). Since the value of N, reported in Table I for isocratic separations is for 
thefirst band X, the average N,,-value for the two bands (not used in calculating PR) is 
therefore smaller for isocratic separation VS. gradient elution. This has the effect of 
(artificially) lowering production rate for isocratic VS. gradient elution. 

Effect of gradient steepness b. By analogy with isocratic separation [lo] we would 
expect maximum production rate in gradient elution to be relatively insensitive to 
gradient steepness, as long as 0.5 < E< 3 (or 0.3 < b < 2). Craig simulations of 
preparative gradient elution were carried out to confirm this prediction; some 
representative data (a = 1.7, kOg for X = 10) are shown in Fig. 8A (“gradient” curve) 
as a function of E. Corresponding data for isocratic separation (“isocratic” curve) are 
plotted in Fig. 8 VS. k’ (kO) for compound X. It is seen that a maximum production rate 
in gradient elution is favored by somewhat higher values of E(2 < E < 5) vs. optimum 
values of k’ in isocratic elution (0.5 < k’ < 3). Part of this difference arises from the 
fact that Eis equal for both X and Y, whereas k’ for Y is 1.7-fold greater than for X. The 
difference between optimum values of k’ or Ein isocratic and gradient elution therefore 
becomes smaller for smaller values of a (~1 = 1.7 in Fig. 8). 
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Fig. 8. Effect of average sample retention (/c’ or k) on production rate and sample size in isocratic and 
gradient elution. (A) Maximum production rate (95% recovery of Y) as a function of gradient steepness (4 
or isocratic solvent strength (k’). Conditions: (gradient) k,, for X = 10, N, and w&v. optimized for 
maximum Z’s; (isocratic) N,, and wy/wS optimized for maximum PR; equal amounts of X and Y in sample. (B) 
Optimum sample size and plate number (both isocratic and gradient; same values) as a function of sample 
retention. Conditions as in Fig. 6 unless noted otherwise. 
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Fig. 8B shows how optimum values of sample size and plate number vary with 
the choice of Kor k’. There is little difference in the optimum values shown here for 
isocratic V.S. gradient elution. This represents another example of the close similarity of 
preparative separations for corresponding isocratic and gradient elution systems. 

Experimental conditions for maximum production rate P,(S, # S,.) 
The preparative gradient-elution separation of samples where S, # S, has been 

examined briefly in ref. 5. CRAIG4 simulations used in that study demonstrated that 
higher sample loads are possible when S, < S, and vice versa for S, > S,, as can be 
inferred from Fig. 2 in this paper. Thus larger samples elute earlier (in a mobile phase 
of lower %B), which means smaller average values of a for the case where S, > S, (Fig. 
2C) and vice versa for S, < S,.. 

If the gradient steepness b is decreased, small-sample resolution will increase for 
the case of S, = S,, because Sincreases (and CI remains constant) as b becomes smaller. 
A similar beneficial effect of flatter gradients is observed in preparative separations, in 
that better separations result -which means that larger samples can be separated for 
some required purity and recovery of the product. If S, # S,, a change in b should have 
a somewhat different effect on sample separation. Thus a flatter gradient means 
a larger value of 6, and elution of the sample in a mobile phase of smaller %B. From 
Fig. 2 it can be inferred that resolution will then increase more slowly with decrease in 
gradient steepness b when S, > S, and more rapidly when S, c S,,. The same should 
also be true of preparative separations, which means that the optimum value of b will 
be lower (vs. the value of b x 0.2 suggested by Fig. 8A for the case of S, = S,) when 
S, > S,, and higher when S, < S,. 

Similar logic suggests that optimum values of k,, should be larger for the case of 
S, > S,, and smaller when S, < S,. 

Effect of sample size. Fig. 9 summarizes a number of CRAIG4 simulations for 
the same gradient conditions as in Fig. 3 and 4 (No = 280, average value of k.,, equal 
[(lo + 17)]/2 = 13.5, CI = 1.7, b = 1) but with different ratios of S,/S, (corresponding 
to different samples) and different sample sizes. Values of k,, were selected to give the 
same resolution (R, = 1.1) for a small sample (w&v, = 10m3). Thus for an average 
value of k,, = 13.5, individual values of k,, for bands X and Y were 9.3 and 17.8 for 
SJS, = 1.05, compared to k,, = 10 (X) and 17 (Y) for SJS, = 1.05. The resolution of 
X and Y for a small sample was in each case intentionally the same, in order to compare 
the contrasting effects of increasing sample size for separations where S,/S, is different. 

As sample size is increased, the separation for the sample with S,/S, = 1.1 
(unfavorable case) is seen to quickly overload, and for the last chromatogram 
(w,/ws = 0.09) the recovery of 99%-pure Y is only 28%. For the sample with 
SJS, = 1.0 (“normal” case), there is less band overlap as the sample size is increased. 
For a sample size of w,,/w, = 0.09, the recovery of 99%-pure Y is 68%; i.e., much 
greater than for the sample with S,/S, = 1.1. 

For the bottom sample of Fig. 9 (S,/S, = 0.9; favorable case), there is little band 
overlap for any of these sample sizes. The recovery of 99%-pure Y is about the same 
(99%) regardless of sample size, and a much larger sample could be injected with 
95% + recovery of Y. These examples emphasize the importance of the relative values 
of S for compounds X and Y; the production rate increases (other factors equal) as 
S/S, increases. 
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Fig. 9. CRAIG4 simulations for separation as a function of the sample (different values of S./S,) and 
sample size (w. = wy). Conditions: k, (av.) = 13.5, b = 1; a = 1.7 for S. = S,; k., values for other samples 
(S. # S,.) selected to give equal & for a small sample; N, = 280. 

Optimum values of the gradient steepness 6. The effect of a change in gradient 
steepness on both small-sample and preparative separations is illustrated by the 
computer simulations of Fig. 10. For purposes of comparison, we have chosen sample 
conditions (values of k,,,) such that the same small-sample resolution (& = 1.05) is 
obtained for b = 1 (the value of R, for each small-sample separation in Fig. 10 is 
indicated over the two bands). The large-sample recoveries of X and Y (shown in Fig. 
10) are seen to be greater (94% of X, 89% of Y) for b = 1 and S, = 9.5, S, = 10.5, vs. 
the case of larger ratios of SJS,; e.g., 37% recovery of X and 35% of Y for 
S,/S, = 10.5/9.5. This is the same effect of sample size seen in Fig. 9. 

Looking first at the small-sample separations, we see in Fig. 10 that resolution 
increases for all three samples (top, middle and bottom) as B decreases. However, 
resolution increases with b faster for the sample with S,/S, = 9.5/10.5 and slower for 
the sample with S,/S, = 10.5/9.5. That is, small-sample resolution is relatively better 
for the former sample at lower values of b, and vice versa for the latter sample -as 
predicted by our discussion of Fig. 2. 

In similar fashion, we see in Fig. 10 (large-sample separations) that the recovery 
of pure product increases with decrease in b much faster for the top separations 
(S, = 9.5, S, = 10.5) vs. the bottom separations (S, = 10.5, S, = 9.5) -again as 
predicted by theory. Specifically, the recovery of Y in the bottom separations increases 
hardly at all as b decreases, which means that the production rate decreases as 
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b 2 =: b=l b = 0.5 

0.60 69/58 1.60 99/99 

0.68 46/41 1.05 75/58 1.43 87/69 

0.78 20/32 1.05 37/35 1.28 47/35 

t/t, 

Fig. 10. CRAIG4 simulations for separation as a function of the sample (different values of S./S,) and 
gradient steepness b. Two sample sizes are shown for each set of conditions: w. = wr with W./W, = 0.001 and 
0.09, respectively; sample resolution R, is indicated for the first (small-sample) separation, and values of 
percentage recovery of 99%-pure product (X/Y) are indicated for the second (large-sample) separation. 
Conditions: k, (av.) = 13.5; a = 1.7 for S. = S,; k,, values for other samples (S. # S,) selected to give equal 
R, for a small sample and b = 1. No = 280 (n. = 91, 140 and 191 for b = 2, 1 and 0.5, respectively). 

b decreases (because run time increases as b decreases). This is in contrast to an 
optimum value of b x 0.2 for the middle case (S, = S,., see Fig. 8A). It can therefore be 
concluded that the optimum value of b is > 0.2 when S, > S,, and < 0.2 when S, < S,. 

Optimum values of&,- Fig. 11 presents computer simulations similar to those of 
Fig. 10, but with gradient steepness held constant while the initial mobile-phase 
composition is varied so as to vary values of k,,. The reference se’parations (with 
a small-sample resolution of R, = 1.05 for each sample) are for k,, (av.) = 13.5 (first 
column of chromatograms). As the initial value of %B is decreased (so that k,,, values 
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keg (ax) = 13.5 135 1350 

1.05 94/89 1.10 99/98 1.10 99/98 

1.05 37/35 1.05 

sx = 10.5 

s, 
= 9.5 

jjIrQ 1 

86/73 1.08 a7175 

24/27 1.05 15/22 

Jib ill 
3.1 - 

Fig. Il. CRAIG4 simulations for separation as a function of the sample (different values of S./S,) and 
initial mobile-phase composition (values of k.3. Two sample sizes are shown for each set of conditions: 
w. = wy with W./W. = 0.001 and 0.09, respectively; sample resolution R, is indicated for the first (small- 
sample) separation, and values of percentage recovery of 99%-pure product (X/Y) are indicated for the 
second (large-sample) separation. Conditions: b = 1.00, a = 1.7 for S, = S,; k, values for other samples 
(S. # S,) selected io give equal R, for a small sample and k., (av.) = 13.5. N. = 280 (nc = 140). 
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10 100 1000 

ko(l (ax.) 

Fig. 12. Production rate (95% recovery of Y) as a function of initial mobile-phase composition (av. value of 
k,, for X and Y). Conditions: a = 1.7, av. z= 1.00 (b = 0.87); (A-D) N. = 280; (E-F) N, optimized for 
maximum production rate. Equal amounts of X and Y in sample. See text for further details. 

increase)“, it is seen that there is a modest increase in R, for the small-sample 
separations when S, < S,, but no change in R, for the sample with S, > S,. That is, 
a larger value of k,, generally favors small-sample resolution, except when S, > S,. 

Similarly the recovery of pure product from the large-sample separations 
increases with increasing keg when S, < S,, but the opposite is true for samples with 
S, > S, -as expected from Fig. 2. Data as in Fig. 11 can be generalized as before, in 
terms of plots of production rate PR vs. average values of k,, for two bands X and 
Y (Fig. 12). The solid curves (A-D) of Fig. 12 correspond to separations where N, is 
constant (equal to 280), and S,/S, varies; a difference in maximum production rate by 
a factor of four is seen as L&/S, varies from 1.05 to 0.90. Fig. 12 also shows that the 
optimum value of k,, (av.) increases for smaller values of S,/S, -as expected from the 
discussion of Fig. 2. That is, for S,/S, < 1, CI increases as cp decreases and k,, (av.) 
increases; this favors a larger initial value of k,, (av.). 

The dashed curves (E, F) of Fig. 12 are corresponding plots of PR (for 
S,/S, = 1.00 and 0.95, respectively) where N, is allowed to vary so as to maximize 
production rate (as in Fig. 3B). In the case of equal values of S(curves B and E), there is 
little difference in the possible production rate as a function of k,, (av.). However, 
when S, < S, (curves C and F), the optimization of N, (smaller values) leads to 
a further increase in PR and to an optimum value of keg (av.) which is larger. 

Additional CRAIG4 simulations for other values of a and k show the same 
trends as in Fig. 12 for TV = 1.7 and k = 1. That is, production rate can be significantly 

’ The change in values of k,, with change in %B is assumed to be given by log k’ = log k, - Srp, 
which is generally a good approximation for reversed-phase separation. Here k, is the value of k’ for water as 
mobile phase. A similar relationship is observed for ion-exchange separations where the charge on the solute 
molecule is 22 (generally the case for proteins) and for separations by hydrophobic interaction 
chromatography [17]. 
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higher for samples where S, < S,, and the gradient for such samples should start at 
a lower value of %B, vs. the case where SJS, > 1. 

Purzjkation vs. separation: the case where X or Y is a major component of the sample 
Quite often the objective of a preparative HPLC separation by gradient elution 

of a peptide or protein sample is the purification of a material that is already g&99% 
pure. That is, the relatively higher cost of HPLC purification makes its use more 

A 

wx/ws = 
w/w = 
Y s 

B 

69/64% 

1 
wx/ws = 0.056 

w/w = 
Y s 

0.14 

C 

wx/ws = 
w/w = 
Y s 

77153% 

b 
0.14 

0.056 

58/83% lb 
0.028 

95/55% L 

0.028 

3/99% 3 
0.003 

0.14 

100/47% e 
0.14 

0.003 

Fig. 13. CRAIG4 simulations for samples where relative concentrations of X and Y vary. Conditions: 
CI = 1.7, k,, for X equal 10; g = 1, TV, = 280. X/Y values are recoveries of 99%-pure X and Y, respectively. 
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attractive at the end of a separation/purification sequence -for a “final polish” of the 
product. The question then arises as to how our conclusions for the case of samples 
containing equal amounts of an impurity X and a product Y will be altered. 

Previous (limited) studies of isocratic separation based on computer simulation 
[lo] suggest that larger amounts of a more-pure product can be charged, vs. the case of 
less-pure feed material. For example, if the feed material is 90%-pure X or Y, rather 
than 50%-pure as in the preceding examples, it was found that about 4 times as much 
product could be injected (for 95% recovery of X or Y). This in turn increases 
production rate by 4-fold. The ability to inject larger amounts of purer product in 
preparative HPLC seems intuitively obvious, and this conclusion matches the 
experience of practical workers. 

We have examined the role of feed purity in preparative gradient elution, using 
CRAIG4 simulations with similar conditions as in our earlier examples (o! = 1.7, 
k,, = 10 and 17 for X and Y, b = 1). Some examples are shown in Fig. 13. In Fig. 13A, 
a sample size of w,/w, = w,./w, = 0.04 gives 95% recovery of 99%-pure X or Y; i.e., the 
reference case we have used so far for our calculations of production rate. For a sample 
3.4-times as large (w,/w, = wy/w, = 0.14, second example in Fig. 13A), the band 
overlap is much more serious -as expected, and the recovery of pure X and Y (5 1 and 
42%) drops sharply. For the same weight of either X or Y, but a lo-fold lower 
concentration of the other compound in the sample (last two examples in Fig. 13A), 
95% recovery of pure X or Y (whichever is the major component) is possible. This is 
similar to the situation observed for isocratic separation [lo], where a 4-fold (VS. 
3.4-fold for gradient) larger weight of product could be injected for the same recovery 
of pure product -when the contamination of the feed is lo-fold less. 

Figs. 13B and C show other simulations, for samples whose composition varies 
in terms of the relative concentrations of X and Y: 0.4/l (B) or l/O.4 (C) in the first 
example, 0.2/l (B) and l/O.2 (C)in the second example, and 0.02/l (B) and l/O.02 (C) in 
the last example. In each case, the weight of the major component is held constant at 
w/w, = 0.14. The recovery of 99%-pure product (either X or Y) is again indicated as 
the value of X/Y (see example of Fig. 3). 

It is also useful to examine the role of feed composition and separation from 
a different standpoint. That is, in some cases we wish to specify some minimum purity 
in the final product; e.g., 99% as in the preceding examples. However, it is also useful 
to specify the relative removal of an impurity from the feed; e.g., 90% removal, which 
for an initial impurity concentration of 10% would mean a final concentration in the 
purified product of 1%. If we plot the results of Fig. 13 in this way, for removal of 
either X or Y from the initial sample (feed) with 95% recovery of purified product, the 
graph of Fig. 14 results. The solid curve is for the removal of compound X as impurity, 
while the dashed curve shows the removal of compound Y. It is noteworthy in this 
example that for impurity (minor component) concentrations of less than 15% 
[corresponding to a (minor component/major component) ratio < 0.2 in the feed], the 
relative removal of the impurity is about the same (88-91%, for 95% recovery of 
product), regardless of the impurity concentration in the feed. This suggests that the 
elution pattern of the impurity is largely determined by the weight of the product band 
-when the impurity is present in less than 15% relative concentration. This seems 
intuitively reasonable, and the various examples of Fig. 13 (excluding the first two 
chromatograms of Fig. 13A, where w, = w,.) provide visual confirmation of this 
observation. 
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Fig. 14. Relative removal of sample impurity (minor component) as a function of sample composition 
(concentrations of X and Y), for 95% recovery product (major component). Conditions: constant weight of 
product in injected sample (w/w, = 0.14); u = 1.7, k,, for X equal 10; b = 1). 

Now consider the case where it is desired to purify a feed that is initially > 80% 
product. If the purification goal can be expressed as some fractional removal of the 
impurity(s), e.g., 90% as in Fig. 14, then the actual composition of the feed is 
immaterial. That is, the impurity concentration in the feed can vary from &20%, and 
the same percentage-removal of impurity (for some required recovery (e.g., 95%) of 
product will be obtained for a given set of separation conditions: same weight of 
product charged, same gradient conditions, etc. This generalization can considerably 
simplify the design of an optimum separation for the case where the feed composition 
varies from batch to batch. 

CONCLUSIONS 

In the present study we have begun to define experimental conditions that 
maximize the production rate of purified product in heavily overloaded separations by 
gradient elution. It has been shown previously that there is a close similarity between 
isocratic and gradient elution for either: (a) the separation of small samples or (b) 
preparative separations where the product band just begins to overlap an adjacent 
impurity band (“touching-band” separation). Similar separations result in each case 
(isocratic or gradient elution) when “corresponding” conditions are used (such that 
k’ = E). This similarity between isocratic and gradient elution is maintained for 
separations involving larger sample sizes (overlapping bands, where the recovery of 
pure product < 99.8%). It is therefore possible to apply our findings for isocratic 
separation involving larger samples (ref. 10) to corresponding separations by gradient 
elution. 

The present study has shown that production rate in isocratic and gradient 
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elution is essentially the same, for the separation of a two-component mixture. Both 
separation procedures show production rate increasing steeply as the separation factor 
a of the two bands (product and impurity) increases. The optimum sample size w/w, 
and plate number N, in gradient elution (for maximum production rate) is the same as 
for corresponding isocratic separations (Table I, Fig. 8B); N,, decreases for larger 
values of both sample retention (k’ or k) and the separation factor a. Once gradient and 
other conditions have been selected so that optimum values of rfare defined, column 
conditions (usually column length and flow-rate) should be varied so as to give 
a certain small-sample resolution: R, ES 1.6 for the “touching-band” case, 1.2 for 95% 
recovery of pure product, and 0.9 for 50% recovery of pure product. Production rate 
increases as product recovery decreases (assumes optimized conditions), and we favor 
a target of 95% recovery when it is important to maximize the g/h of purified product 
for a column of given diameter. 

Optimum values of k’ and E are somewhat different in isocratic and gradient 
elution, with gradient elution favoring values of E > k’; i.e., 3 < E < 5 vs. 0.5 < k’ < 2. 
Production rate in gradient elution is also influenced by the initial mobile phase, which 
determines the value of k’ (k,,) at the beginning of separation. However this 
dependence is not very pronounced, with 5 < k,, -c 100 giving comparable production 
rates. 

The above conclusions are strictly applicable for the usual case where the sample 
components (product and impurity) have a similar dependence of k’ on mobile phase 
composition (%B); i.e., the two compounds have similar S values, where S = - d(log 
k’)/drp. When the S-values of the two compounds are significantly different (by more 
than 2%), then the amount of sample that can be purified in a given run (i.e., the weight 
of injected sample) can change dramatically. There is also a corresponding effect on the 
best choice of experimental conditions, and the results presented here can serve to 
guide the chromatographer in selecting the most favorable conditions for a given 
sample, so as to maximize production rate. For this reason, it is important to measure 
values of S for the sample to be separated. 

The case where the composition of the feed varies was also examined, with two 
conclusions. First, as feed purity increases, the amount of sample that can be injected 
(e.g., for 95% recovery of 99%-pure product) increases by 4-fold or more. Second, 
when an impurity is present in the feed at less than 15% of the product concentration, 
the fractional removal of the impurity during separation does not change for feeds 
containing different concentrations of the impurity relative to the product (e.g., 
O-15% impurity). This conclusion can be useful in fine-tuning separation conditions 
for maximum throughput, when the feed composition varies from batch to batch. 

SYMBOLS 

b 

: 
k 
k:f k, 
n, 
N0 

gradient steepness parameter (eqns. 1 and 2) 
solute capacity factor (usually for a small sample) 
average value of k’ in gradient elution 
value of k’ at the beginning of separation (in gradient elution) 
values of k’ for solutes X and Y 
number of stages used in Craig simulation 
column plate number, equal to [(f + 1)/a n, for Craig simulation 
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production rate (arbitrary units); equal to weight of purified product 
produced per unit time (assumes column of fixed diameter) 
solute parameter equal to -d(log k’)/dp 
value of S for solutes X and Y 
gradient time (min) 
column dead-volume (ml) 
total sample weight injected (g) 
column saturation capacity (g) 
value of w, for X or Y (g) 
injected weight of compounds X or Y (g) 
weight of X or Y in the stationary phase (g) 
compounds to be separated (X elutes first; Y is usually the product) 
separation factor 
change in cp during a gradient separation 
mobile-phase composition; volume fraction of B solvent in a binary 
mobile phase A-B 
value of cp at the beginning of a gradient separation 
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